半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
结合深度强化学习与领域知识的电力系统拓扑结构优化
作者:
作者单位:

南洋理工大学电气与电子工程学院,新加坡 639798,新加坡

摘要:

对拓扑结构进行优化可提高电力系统运行灵活性,然而线路开断与变电站母线分裂等系统级的离散决策变量维度极高。该拓扑结构优化问题难以由传统混合整数优化方法求解。针对该问题,提出了一种结合异步优势Actor-Critic(A3C)深度强化学习与电力系统领域知识的运行优化方法,将在线优化的计算负担转移至离线智能体训练阶段。该方法通过同时考虑拓扑结构与发电出力调整的动作空间设计系统运行控制智能体,以最小化约束越限为训练奖励,通过强制约束校验缩减搜索空间并提高强化学习效率,从而实现电力系统运行拓扑结构优化的快速计算,提高电力系统运行的安全性。仿真测试验证了所提方法的有效性。

关键词:

基金项目:

通信作者:

作者简介:

严梓铭(1994—),男,博士研究生,主要研究方向:电网运行与控制。E-mail:yanzmics@gmail.com
徐岩(1985—),男,通信作者,博士,副教授,博士生导师,主要研究方向:电网稳定与控制、微网与智能电网中的数据分析。E-mail:xuyan@ntu.edu.sg


Topology Optimization of Power Systems Combining Deep Reinforcement Learning and Domain Knowledge
Author:
Affiliation:

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract:

While the flexibility of power system operation can be improved by topology optimization, the dimension of system-level discrete decision variables, including the connections of lines and substation busbars, is prohibitively high. Thus, the topology optimization problem of power systems can hardly be solved by the conventional mixed-integer optimization method. Aiming at this problem, a reinforcement learning based method is proposed combining asynchronous advantage Actor-Critic (A3C) and power system domain knowledge, which transfers the computational burden of online optimization to the offline agent training stage. The defined reward function is adopted to minimize the violations of power transmission line flow limits. Forced constraints verification is employed to reduce the searching space and improve the efficiency of the reinforcement learning. The fast computation of the topology optimization of power system operation is realized,and the operation security of power systems is enhanced. The effectiveness of the proposed method is validated by simulation testing results.

Keywords:

Foundation:
引用本文
[1]严梓铭,徐岩.结合深度强化学习与领域知识的电力系统拓扑结构优化[J].电力系统自动化,2022,46(1):60-68. DOI:10.7500/AEPS20210510001.
YAN Ziming, XU Yan. Topology Optimization of Power Systems Combining Deep Reinforcement Learning and Domain Knowledge[J]. Automation of Electric Power Systems, 2022, 46(1):60-68. DOI:10.7500/AEPS20210510001.
复制
支撑数据
分享
历史
  • 收稿日期:2021-05-10
  • 最后修改日期:2021-09-04
  • 录用日期:
  • 在线发布日期: 2022-01-05
  • 出版日期: