半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于集员滤波的自动发电控制系统虚假数据注入攻击检测
作者:
作者单位:

1.河海大学能源与电气学院,江苏省南京市 211100;2.南瑞集团有限公司(国网电力科学研究院有限公司),江苏省南京市 211106

摘要:

随着先进通信与信息技术的广泛应用,虚假数据注入攻击已成为威胁自动发电控制系统安全的重要因素之一。网络攻击的检测是防御的首要任务,文中提出了一种基于集员滤波的自动发电控制系统虚假数据注入攻击检测方法。首先,针对自动发电控制系统中虚假数据注入攻击的影响进行了分析,并建立了互联电网自动发电控制系统模型以及虚假数据注入攻击的模型。其次,基于实时自动发电控制系统的控制指令以及测量数据,对自动发电控制系统椭球集进行预测更新和测量更新,通过判断预测更新椭球集与测量更新椭球集之间是否存在交集,检测系统的数据传输中可能存在的虚假数据注入攻击。最后,在IEEE标准双区域互联电网中验证了所提方法的有效性。

关键词:

基金项目:

国家自然科学基金资助项目(U1866209)。

通信作者:

作者简介:

吴英俊(1985—),男,通信作者,博士,副教授,硕士生导师,主要研究方向:电力信息物理系统、电力系统经济与市场、主动配电网与微电网。E-mail:yingjunwu@hotmail.com
汝英涛(1998—),男,硕士研究生,主要研究方向:电力信息物理系统。E-mail:electric_ruyt@126.com
刘锦涛(1998—),男,硕士研究生,主要研究方向:电力信息物理系统、综合能源经济调度与电力市场。E-mail:jintao_liu_edu@163.com


False Data Injection Attack Detection for Automatic Generation Control System Based on Set-membership Filtering
Author:
Affiliation:

1.College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;2.NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China

Abstract:

With the wide application of advanced communication and information technology, the false data injection (FDI) attack has become one of the important factors which threat the security of automatic generation control (AGC) system. The detection of cyber-attacks is a priority for defense. This paper proposes a method of FDI attack detection for AGC system based on the set-membership filtering. Firstly, this paper analyzes the influence of the FDI attacks in AGC systems, and establishes a model of AGC system of interconnected power grids and a model of FDI attacks. Secondly, based on the real-time control commands and measurement data, the prediction update and measurement update of the AGC system ellipsoid set are performed. By determining whether there is an intersection between the prediction update ellipsoid set and the measurement update ellipsoid set, the possible FDI attacks in the data transmission of the system are detected. Finally, the effectiveness of the proposed method is verified in the IEEE dual-area interconnected grid.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. U1866209).
引用本文
[1]吴英俊,汝英涛,刘锦涛,等.基于集员滤波的自动发电控制系统虚假数据注入攻击检测[J].电力系统自动化,2022,46(1):33-41. DOI:10.7500/AEPS20210525006.
WU Yingjun, RU Yingtao, LIU Jintao, et al. False Data Injection Attack Detection for Automatic Generation Control System Based on Set-membership Filtering[J]. Automation of Electric Power Systems, 2022, 46(1):33-41. DOI:10.7500/AEPS20210525006.
复制
支撑数据
分享
历史
  • 收稿日期:2021-05-25
  • 最后修改日期:2021-09-18
  • 录用日期:
  • 在线发布日期: 2022-01-05
  • 出版日期: